Enhanced chemotherapy efficacy by sequential delivery of siRNA and anticancer drugs using PEI-grafted graphene oxide.
نویسندگان
چکیده
PEI GO The RNA interference (RNAi) technique, an effective method to inhibit protein expression by targeted cleavage of messenger RNA (mRNA), has made substantial progress since the fi rst demonstration of gene knockdown in mammalian cells. [ 1 ] Short interfering RNA (siRNA) induces specifi c silencing of targeted protein, thus offering signifi cant potential in overcoming multiple drug resistance (MDR) of cancer cells. [ 2 ] For example, Bcl-2 protein, one of the main antiapoptotic defense proteins, is closely related to the MDR of cancer cells. [ 3 ] Knockdown of the Bcl-2 protein expression level in cancer cells by Bcl-2-targeted siRNA would effectively overcome the MDR of cancer cells and sensitize cancer cells to anticancer drugs. [ 3 d, 4 ] Herein, we report sequential delivery of Bcl-2-targeted siRNA and the anticancer drug doxorubicin (DOX) using polyethylenimine (PEI)-functionalized graphene oxide (PEI-GO). We demonstrate that the PEI-GO is an excellent nanocarrier for effective delivery of siRNA and chemical drugs, and that sequential delivery of the siRNA and DOX by PEI-GO into cancer cells exhibits a synergistic effect, which leads to a signifi cantly enhanced chemotherapy effi cacy. To the best of our knowledge, this is the fi rst report on applications of GO-based nanovectors for delivery of siRNA, and sequential delivery of siRNA and anticancer drugs into cancer cells. Graphene, a newly discovered 2D nanomaterial, has been studied extensively due to its fundamental importance and potential applications, [ 5 ] while exploration of its biomedical applications has just started. [ 6 ] Noncovalent adsorption through π – π stacking, electrostatic, and other molecular interactions has proven to be effective for immobilizing chemical drugs, single-stranded DNA, and RNA onto GO sheets. [ 6 a–e]
منابع مشابه
Dual Nano-Carriers using Polylactide-block-Poly(N-isopropylacrylamide-random-acrylic acid) Polymerized from Reduced Graphene Oxide Surface for Doxorubicin Delivery Applications
The stimuli-responsive nanocomposites were designed as drug delivery nanocarriers. Thanks to promising properties such as large surface area and easy chemical functionalization, the graphene derivatives can be used for the drug delivery applications. For this purpose, in the current work, the poly(L,D-lactide)-block-poly(N-isopropylacrylamide-rand-acrylic acid) grafted from reduced graphene oxi...
متن کاملFunctionalized Graphene Oxide Mediated Adriamycin Delivery and miR-21 Gene Silencing to Overcome Tumor Multidrug Resistance In Vitro
Multidrug resistance (MDR) is a major impediment to successful cancer chemotherapy. Co-delivery of novel MDR-reversing agents and anticancer drugs to cancer cells holds great promise for cancer treatment. MicroRNA-21 (miR-21) overexpression is associated with the development and progression of MDR in breast cancer, and it is emerging as a novel and promising MDR-reversing target. In this study,...
متن کاملSynthesis of new biodegradable nanocarriers for SN38 delivery and synergistic phototherapy
Objective (s): SN38 is the prominent and effective anticancer drug for treating various types of human cancers such as colorectal, ovarian and lung cancers. SN38 is highly toxic, and due to its poor solubility in aqueous media, and low stability and hydrolysis at physiological pH, it has not been used as an anti-cancer drug. To overcome these problems, SN38 was conjugated with new nanocarriers ...
متن کاملA Critical Comparison Study on the pH-Sensitive Nanocomposites Based on Graphene-Grafted Chitosan for Cancer Theragnosis
Abstract Drug delivery is one of the major issues in the world of science, which receives a large part of the research in various fields. The ultimate goal of drug delivery is to help the patient with developing advanced drug delivery systems. These systems revolutionize the treatment of many diseases including cancer. Effective drug carriers can significantly reduce the undesirable side effec...
متن کاملA Critical Comparison Study on the pH-Sensitive Nanocomposites Based on Graphene-Grafted Chitosan for Cancer Theragnosis
Abstract Drug delivery is one of the major issues in the world of science, which receives a large part of the research in various fields. The ultimate goal of drug delivery is to help the patient with developing advanced drug delivery systems. These systems revolutionize the treatment of many diseases including cancer. Effective drug carriers can significantly reduce the undesirable side effec...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Small
دوره 7 4 شماره
صفحات -
تاریخ انتشار 2011